Recall: The simplex method works under the following assumptions:

1) The program is in the equality form: we want to maximize

$$z = c_1 x_1 + \ldots + c_n x_n$$

subject to the constraints

$$a_{11}x_1 + \ldots + a_{1n}x_n = b_1$$

$$\ldots \qquad \ldots$$

$$a_{m1}x_1 + \ldots + a_{mn}x_n = b_m$$

$$x_1, x_2, \ldots, x_n \ge 0$$

2) The coefficient matrix

$$A = \left[\begin{array}{ccc} a_{11} & \dots & a_{1n} \\ \vdots & & \vdots \\ a_{m1} & \dots & a_{mn} \end{array} \right]$$

is in the basic form.

3)
$$b_i \ge 0$$
 for $i = 1, ..., m$.

- These assumptions assure that the program has a basic feasible solution.
- Phase I of the simplex method finds some basic feasible solution or verifies that no feasible solutions exists.

Example. Maximize

$$z = x_1 + 2x_2$$

subject to:

$$x_1 + 3x_2 + x_3 = 2$$
$$-x_2 - x_3 = -1$$
$$x_1, x_2, x_3 \ge 0$$

Phase I of the simplex method

Assumption: The linear program is in the equality form with constraints

$$a_{i1}x_1 + \ldots + a_{in}x_n = b_i$$

for i = 1, ..., m.

1) Modify the constraints, if needed, so that $b_i \ge 0$ for i = 1, ..., m.

2) Add an additional variable s_i to the *i*-th constraint for i = 1, ..., m.

Note. The augmented matrix of the new constraints is in the basic form.

3) Use the simplex method to minimize the function

$$z = s_1 + \cdots + s_m$$

with the new constraints. If the minimum is non-zero, then the original linear program has not feasible solutions.

If the minimum is z=0, then the solution that gives the minimum has $s_i=0$ for $i=1,\ldots,m$. In such case, values of the variables x_1,\ldots,x_n give a basic feasible solution of the original linear program.