Recall: The standard way of computing eigenvalues and eigenvectors of an $n \times n$ matrix A:

- 1) Compute the characteristic polynomial $P(\lambda) = \det(A \lambda I_n)$.
- 2) Eigenvalues of $A = \text{roots of } P(\lambda)$.
- 3) Eigenvectors corresponding to an eigenvalue $\lambda = \text{vectors in Nul}(A \lambda I_n)$.

Problems:

- For large matrices computations of $P(\lambda)$ are slow.
- Even if we know $P(\lambda)$, it is difficult to compute its roots.

More efficient way: The power method.

Assumptions:

ullet A is an n imes n matrix with eigenvalues $\lambda_1, \dots, \lambda_n$ such that

$$|\lambda_1| > |\lambda_2| > \ldots > |\lambda_n|$$

• For i = 1, ..., n, by \mathbf{w}_i we will denote an eigenvector corresponding to the eigenvalue λ_i , such that $||\mathbf{w}_i|| = 1$.

Computing the largest eigenvalue λ_1 its eigenvector

Computing the other eigenvalues and eigenvectors