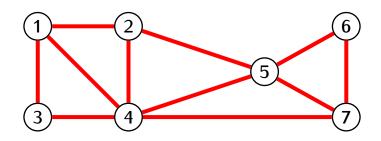
Notation. If *S* is a finite set then

|S| :=(the number of elements of S)

Definition

Let G be a graph with the set of vertices V. Let $S\subseteq V$ and let $\overline{S}=V\setminus S$. Then

$$E(S, \overline{S}) = \begin{pmatrix} \text{the set of edges of } G \\ \text{with one end in } S \\ \text{and the other end is } \overline{S} \end{pmatrix}$$



Partitioning problem. For a given connected graph with the set of vertices $V=1,\ldots,N$ and a given number $1\leq k\leq N$ find $S\subseteq V$ such that |S|=k and that $E(S,\overline{S})$ is as small as possible.

Definition

Let G be a graph with vertices $V = \{1, ..., N\}$, and let $S \subseteq V$. The selector vector of S is the vector $\mathbf{v}_S \in \mathbb{R}^N$ given by

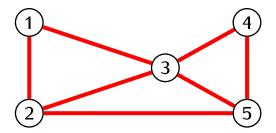
$$\mathbf{v}_{S} = \begin{bmatrix} x_{1} \\ \vdots \\ x_{N} \end{bmatrix} \quad \text{where} \quad x_{i} = \begin{cases} 1 & \text{if } i \in S \\ -1 & \text{if } i \in \overline{S} \end{cases}$$

Proposition

Let G be a graph with vertices $V = \{1, ..., N\}$, and let L be the Laplacian of G. For $S \subseteq V$ we have:

$$|E(S, \overline{S})| = \frac{1}{4} \cdot \mathbf{v}_S^T L \mathbf{v}_S$$

Example.



Notation. If i, j are vertices in a graph then we will write $i \sim j$ if there is an edge joining i and j.

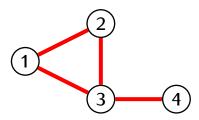
Lemma

Let G be a graph with vertices $V = \{1, ..., N\}$, and let L be the Laplacian

of
$$G$$
. For any vector $\mathbf{v} = \begin{bmatrix} x_1 \\ \vdots \\ x_N \end{bmatrix}$ we have

$$\mathbf{v}^T L \mathbf{v} = \sum_{\substack{i < j \\ i \sim j}} (x_i - x_j)^2$$

Example.



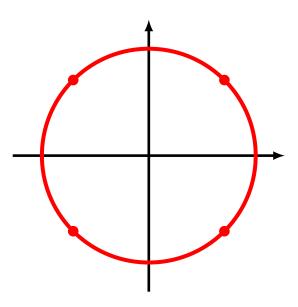
Proof of Lemma.

Proof of Proposition (by example).



Partitioning problem restated:

Relaxation:



Preparation: Eigenvectors of the Laplacian of a graph

Let G be a connected graph with N vertices and L be the Laplacian of G.

1) Since L is a symmetric matrix, it has N orthonormal eigenvectors $\mathbf{u}_1, \dots, \mathbf{u}_N$.

Let

$$\lambda_1 = \text{eigenvalue corresponding to } \mathbf{u}_1$$
 $\lambda_2 = \text{eigenvalue corresponding to } \mathbf{u}_2$
 \dots
 $\lambda_N = \text{eigenvalue corresponding to } \mathbf{u}_N$

We can assume that $\lambda_1 \leq \lambda_2 \leq \cdots \leq \lambda_N$.

- 2) $\lambda_i \geq 0$ for i = 1, ..., N (since L can be written in the form BB^T for some matrix B).
- 3) Since G connected, we have $\lambda_1 = 0$ and $\lambda_i > 0$ for i = 2, ..., N.
- 4) We can take

$$\mathbf{u}_1 = \frac{1}{\sqrt{N}} \begin{bmatrix} 1 \\ \vdots \\ 1 \end{bmatrix}$$

Solution of the relaxed problem

solution of the relaxed problem continued...

Theorem

Let G be a graph with N vertices, and let λ_2 be the second smallest eigenvalue of the Laplacian of G. Then for any set S of vertices of G we have

$$|E(S,\overline{S})| \geq \frac{|S|\cdot |\overline{S}|}{N} \cdot \lambda_2$$

Definition

Let G be a graph. The second smallest eigenvalue λ_2 of the Laplacian of G is called the *algebraic connectivity* of G.

Back to the partitioning problem

Recall: Given a connected graph with the set of vertices $V = \{1, 2, ..., N\}$ and 0 < k < N we want to find $S \subseteq V$ such that |S| = k and $|E(S, \overline{S})|$ is as small as possible (equivalently: $\mathbf{v}_S^T L \mathbf{v}_S$ is as small as possible).

Approximated solution:

The spectral partitioning algorithm

Recall: Given a connected graph with the set of vertices $V = \{1, 2, ..., N\}$ and 0 < k < N we want to find $S \subseteq V$ such that $|E(S, \overline{S})|$ is as small as possible.

Approximated solution:

- 1. Compute the Laplacian *L* of the graph.
- 2. Compute the eigenvector of L corresponding to the second smallest eigenvalue λ_2 :

$$\mathbf{u}_2 = \left[\begin{array}{c} x_1 \\ \vdots \\ x_N \end{array} \right]$$

3. Let

$$S_{+} = \{i_{1}, \dots, i_{k}\} \subseteq V$$

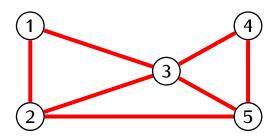
$$S_{-} = \{j_{1}, \dots, j_{k}\} \subseteq V$$

such that

- \bullet x_{i_1}, \ldots, x_{i_k} are the largest entries of \mathbf{u}_2
- x_{j_1}, \ldots, x_{j_k} are the smallest entries of \mathbf{u}_2 .

If $x_{i_1} + \cdots + x_{i_k} \ge -(x_{j_1} + \cdots + x_{j_k})$ take $S = S_+$. Otherwise take $S = S_-$.

Example.



$$L = \begin{bmatrix} 2 & -1 & -1 & 0 & 0 \\ -1 & 3 & -1 & 0 & -1 \\ -1 & -1 & 4 & -1 & -1 \\ 0 & 0 & -1 & 2 & -1 \\ 0 & -1 & -1 & -1 & 3 \end{bmatrix}$$

Definition

Let G be a graph with the set of vertices V. The *Cheeger constant* of G is the number

$$h(G) = \min \left\{ \frac{|E(S,\overline{S})|}{|S|} \mid S \subseteq V, \ 1 \le |S| \le \frac{|V|}{2} \right\}$$

Corollary

If λ_2 is the algebraic connectivity a graph G then

$$h(G) \geq \frac{1}{2}\lambda_2$$

Theorem (Cheeger inequality)

If λ_2 is the algebraic connectivity of a graph G then

$$\sqrt{2\lambda_2 d_{\text{max}}} \ge h(G)$$

where d_{\max} is the maximal degree of a vertex of G.