Example 1. A farmer plans to plant two types of crops on a 100 acre farm: C_1 and C_2 . It costs

- \$100 and 4 hours of labor to grow 1 acre of C_1
- \$300 and 1 hour of labor to grow 1 acre of C_2 .

Each acre of C_1 will bring \$200 profit, and each acre of C_2 will bring \$100 profit. The farmer can spend up to \$27,000 on the production costs and up to 280 hours of labor. How many acres of each crop should be planted to maximize the profit?

Example 2. A company manufacturing widgets has 2 factories and 3 warehouses. The cost of sending one widget from each factory to each warehouse is as follows:

	W_1	W_2	W_3
F ₁	5	5	3
F ₂	6	4	

The factory F_1 can produce up to 10,000 widgets per week and F_2 up to 7,000 widgets per week. The warehouses must receive exactly 8,000 widgets per week for W_1 , 5,000 widgets per week for W_2 , and 2,000 widgets per week for W_3 .

How many widgets should be shipped each week from each factory to each warehouse to minimize the shipping costs?

The general form of a linear program

For the decision variables x_1, \ldots, x_n find the minimum (or the maximum) of the objective function

$$z = c_1 x_1 + \ldots + c_n x_n$$

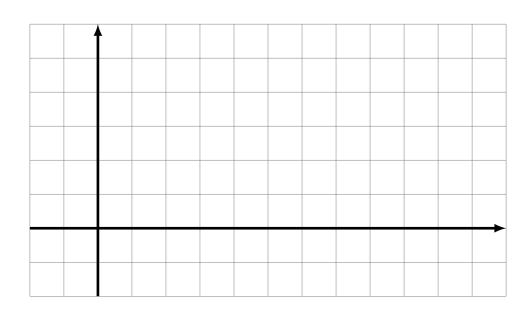
subject to constraints:

$$a_{i1}x_1 + \ldots + a_{in}x_n \stackrel{\leq}{=} b_i$$

for i = 1, ..., m, and possibly $x_j \ge 0$ for j = 1, ..., n.

Sidenote: The growth of linear functions

Example: $f(x_1, x_2) = 3x_1 + 2x_2$



Back to Example 1

Maximize:

$$f(x_1, x_2) = 200x_1 + 100x_2$$

subject to the constraints:

$$x_1 + x_2 \le 100$$

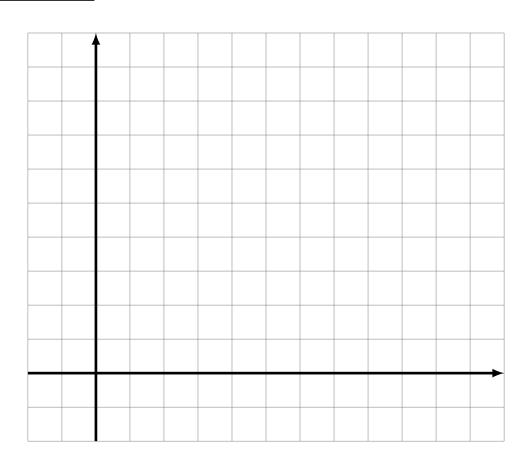
$$100x_1 + 300x_2 \le 27000$$

$$4x_1 + x_2 \le 280$$

$$x_1 \ge 0$$

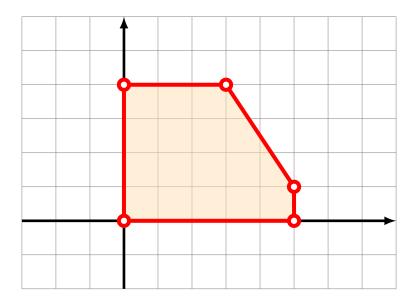
$$x_2 \ge 0$$

Graphical method:

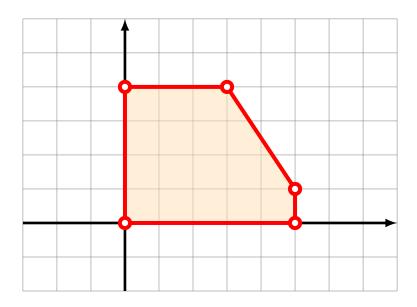


Fact

The maximum and the minimum of the objective function, if it exists, always occurs in one of extreme points of the feasible region.



Note. It may happen that the objective function assumes the minimum or the maximum in infinitely many points, but even then some of them will be extreme points.

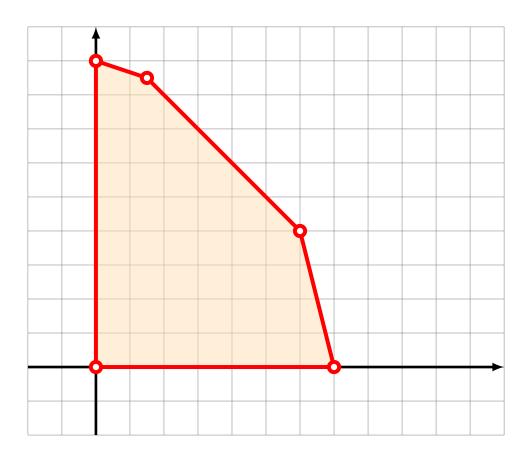


Upshot. A linear program can be solved as follows:

- Find coordinates of all extreme points of the feasible region.
- Compute the value of the objective function at each extreme point.
- The point with the biggest value is the maximum, the point with the smallest value is the minimum.

Back to Example 1:

$$f(x_1, x_2) = 200x_1 + 100x_2$$



Problem. In practical applications there are too many extreme points to compute all of them.