In this section we assume that we are working with a data matrix

$$A = [X_1 \quad X_2 \quad \dots \quad X_M]$$

which has been demeaned. That is $m_{X_i} = 0$, or equivalently $X_i = \widetilde{X}_i$ for i = 1, ..., M.

Example.

A data matrix with demeaned exam scores:

$$A = \begin{bmatrix} \text{Ex 1} & \text{Ex 2} & \text{Ex 3} \\ \text{Aly} & \begin{bmatrix} -24 & 1 & -40 \\ -3 & -2 & -6 \\ 29 & 5 & 17 \\ 26 & -2 & 9 \\ \text{Emma} & 5 & 30 \\ \text{Finn} & 15 & -7 & -10 \end{bmatrix}$$

Definition

Let $A = [X_1 \dots X_M]$ be a demeaned data matrix.

• The 1st principal axis of A is a vector

$$\mathbf{u}_1 = \begin{bmatrix} c_1 \\ \vdots \\ c_M \end{bmatrix}$$

such that $||\mathbf{u}_1|| = 1$ and the variance of the vector

$$Y_1 = A\mathbf{u}_1 = c_1 X_1 + \ldots + c_M X_M$$

is the largest possible.

• The vector Y_1 is called the 1^{st} principal component of A.

Computations of U.

Take
$$u = \begin{bmatrix} c_i \\ \vdots \\ c_m \end{bmatrix}$$
, $\|u\| = 1$, and let $Y = A \cdot u = c_i X_i + ... + c_m X_m$
Check: Since $X_i = \widetilde{X}_i$ for $i = 1,..., M$ thus we have $Y = \widetilde{Y}_i$.

$$= \frac{1}{N} (Au)^{T} (Au)$$
$$= \frac{1}{N} u^{T} A^{T} A u$$

Constrained optimization of quadratic forms gives:

- 1) Var (4) is the largest if u is a unit eigenvector corresponding to the largest eigenvalue 2, of CA.
- 2) For this choice of u we have Var (4) = 1/2.

Proposition

Given a demeaned data matrix $A = [X_1 \dots X_M]$ the 1st principal axis of A is a vector

$$\mathbf{u}_1 = \begin{bmatrix} c_1 \\ \vdots \\ c_M \end{bmatrix}$$

such that $||\mathbf{u}_1|| = 1$ and \mathbf{u}_1 is an eigenvector of the covariance matrix C_A corresponding to the largest eigenvalue of this matrix.

Moreover, if $Y_1 = A\mathbf{u}_1$ is the 1st principal component of A then $Var(Y_1) = \lambda_1$ where λ_1 is the largest eigenvalue of the covariance matrix C_A .

Vor (A) = Var (X₁) + ... + Var (X_M) = tr C_A =
$$\frac{\chi_1 + \chi_2 + ... + \chi_M}{\chi_1 + \chi_2 + ... + \chi_M}$$

all eigenvalues of C_A
($\chi_1 > 0$ since C_A
is positive semidefinite)

This gives:
$$O \leq Var(Y_i) = \lambda_i \leq \lambda_i + ... + \lambda_M = Var(A)$$
.