Recall:

Definition

A square matrix A is a diagonalizable if A is of the form

$$A = PDP^{-1}$$

where D is a diagonal matrix and P is an invertible matrix.

Diagonalization Theorem

- 1) An $n \times n$ matrix A is a diagonalizable if and only if it has n linearly independent eigenvectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n$.
- 2) In such case $A = PDP^{-1}$ where :

$$P = \begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \dots & \mathbf{v}_n \end{bmatrix}$$

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix} \qquad \begin{array}{l} \lambda_1 = \text{eigenvalue corresponding to } \mathbf{v}_1 \\ \lambda_2 = \text{eigenvalue corresponding to } \mathbf{v}_2 \\ \dots & \dots & \dots \\ \lambda_n = \text{eigenvalue corresponding to } \mathbf{v}_n \end{array}$$

Example.

$$A = \begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$$
 eigenvalues: $\lambda_1 = 1$, $\lambda_2 = 5$
basis of the eigenspace of $\lambda_1 = 1$: $\left\{ \begin{bmatrix} -2 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \end{bmatrix} \right\}$
basis of the eigenspace of $\lambda_1 = 5$: $\left\{ \begin{bmatrix} 1 \\ 1 \end{bmatrix} \right\}$

Thus A is diagonalizable:

A = PDP-1 where
$$P = \begin{bmatrix} -2 & -1 & 1 \\ 1 & 0 & 1 \\ 0 & 1 & 1 \end{bmatrix}$$

$$68 \qquad D = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 5 \end{bmatrix}$$

Note. Not every matrix is diagonalizable.

Example.

$$A = \left[\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array} \right]$$

The characteristic polynomial of A:

$$P(\lambda) = \det \begin{bmatrix} 2 - \lambda & 1 \\ 0 & 2 - \lambda \end{bmatrix} = (2 - \lambda)(2 - \lambda) = 0$$
(eigenvalues of A) = (roots of $P(\lambda)$) = $\{\lambda = 2\}$

Eigenspace for $\lambda = 2 = \text{Nul}(\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix})$

$$\begin{bmatrix} \lambda_1 & \lambda_2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_2 & 0 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_3 & 0 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ \lambda_4 & 0 \end{bmatrix}$$
boxis of the eigenspace = $\{\begin{bmatrix} 1 & 1 \\ 0 & 0 \end{bmatrix}\}$

Thus A has only one linearly independent eigenvector - not enough for diagonalization.

Recall:

Definition

lf

$$\mathbf{u} = \left[\begin{array}{c} a_1 \\ \vdots \\ a_n \end{array} \right] \qquad \mathbf{v} = \left[\begin{array}{c} b_1 \\ \vdots \\ b_n \end{array} \right]$$

are vectors in \mathbb{R}^n then the *dot product* of \mathbf{u} and \mathbf{v} is the number

$$\mathbf{u}\cdot\mathbf{v}=a_1b_1+\ldots+a_nb_n$$

Note: u · v = u · v

dot product matrix multiplication

$$u = \begin{bmatrix} a_1 \\ \vdots \\ a_n \end{bmatrix} \quad v = \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} \quad u^T = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix}$$

$$u^T v = \begin{bmatrix} a_1 & \dots & a_n \end{bmatrix} \cdot \begin{bmatrix} b_1 \\ \vdots \\ b_n \end{bmatrix} = a_1 b_1 + \dots + a_n b_n$$

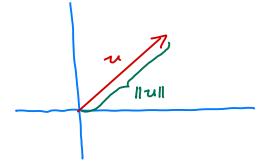
Definition

If $\mathbf{u} \in \mathbb{R}^n$ then the *length* (or the *norm*) of \mathbf{u} is the number

$$||\mathbf{u}|| = \sqrt{\mathbf{u} \cdot \mathbf{u}}$$

$$u = \begin{bmatrix} a_{1} \\ \vdots \\ a_{n} \end{bmatrix} \qquad u \cdot u = a_{1}^{2} + ... + a_{n}^{2}$$

$$\|u\| = \sqrt{a_{1}^{2} + ... + a_{n}^{2}}$$



Definition

Vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^n$ are *orthogonal* if $\mathbf{u} \cdot \mathbf{v} = 0$.

Definition

A square matrix $Q = [\mathbf{u}_1 \ \mathbf{u}_2 \ \dots \ \mathbf{u}_n]$ is an orthogonal matrix if $\{\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_n\}$ is an orthonormal set of vectors, i.e.:

$$\mathbf{u}_i \cdot \mathbf{u}_j = \begin{cases} 1 & \text{if } i = j \\ 0 & \text{if } i \neq j \end{cases}$$

Example.

$$A = \begin{bmatrix} 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \\ 1/3 & 2/3 & -2/3 \end{bmatrix}$$

$$\mathbf{u}_{1} \quad \mathbf{u}_{2} \quad \mathbf{u}_{3}$$

Example.
$$A = \begin{bmatrix} 2/3 & 1/3 & 2/3 \\ -2/3 & 2/3 & 1/3 \\ 1/3 & 2/3 & -2/3 \end{bmatrix}$$

$$u_1 \cdot u_1 = (\frac{2}{3})^2 + (-\frac{2}{3})^2 + (\frac{1}{3})^2 = \frac{4}{9} + \frac{4}{9} + \frac{1}{9} = (\frac{2}{3})^2 + (\frac{2}{3})^$$

Theorem

If Q is an orthogonal matrix then Q is invertible and $Q^{-1} = Q^{T}$.

Note:

A =
$$r_1 \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$$

B = $\begin{bmatrix} 7 & 8 \\ 9 & 0 \end{bmatrix}$

A · B = $\begin{bmatrix} r_1 \circ c_1 \\ r_2 \circ c_1 \end{bmatrix}$

C, c_2

1 · B + 2· O

 $c_1 \circ c_2$

1 · B + 2· O

 $c_2 \circ c_2$
 $c_3 \circ c_2$
 $c_4 \circ c_4$
 $c_5 \circ c_4$
 $c_5 \circ c_5$
 $c_7 \circ c_8$
 $c_7 \circ c_8$
 $c_8 \circ c_9$
 $c_9 \circ c_9$

Definition

A square matrix A is *symmetric* if $A^T = A$.

Example:

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 4 & 5 \\ 3 & 5 & 6 \end{bmatrix}$$

Spectral Theorem

If A is an $n \times n$ symmetric matrix then A has n orthonormal eigenvectors $\mathbf{u}_1, \ldots, \mathbf{u}_n$.

As a consequence the matrix A is diagonalizable:

$$A = QDQ^{-1} = QDQ^{T}$$

where

$$Q = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \dots & \mathbf{u}_n \end{bmatrix}$$

is an orthogonal matrix with the orthonormal eigenvectors as columns and

$$D = \begin{bmatrix} \lambda_1 & 0 & \dots & 0 \\ 0 & \lambda_2 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & \lambda_n \end{bmatrix}$$

is a diagonal matrix, where λ_i is an eigenvalue of A corresponding to the eigenvector \mathbf{u}_i .