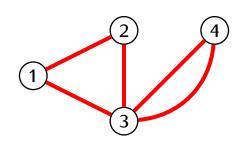
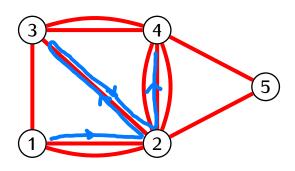
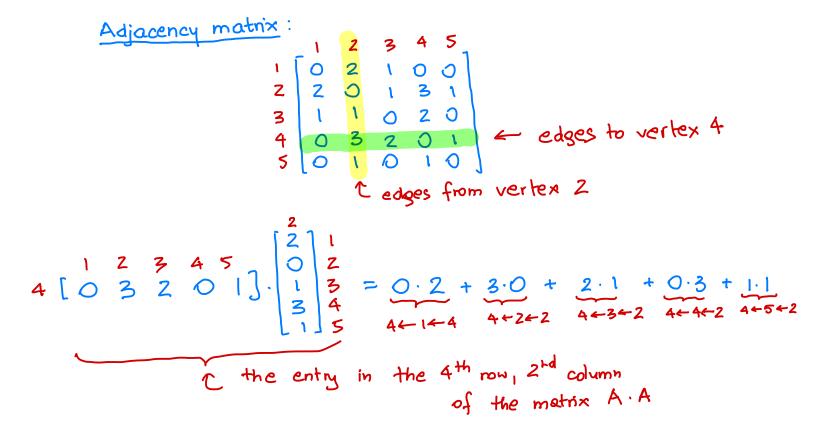

Definition


For a graph with vertices 1, 2, 3, ..., N the *adjacency matrix* of the graph is an $N \times N$ matrix $A = (a_{ij})$ such that

 $a_{ij} =$ (the number of edges from j to i)

Example. Directed graph:


Example. Undirected graph:


Note: The adjacency matrix of an undirected graph is symmetric: $A = A^{T}$.

Definition

A *path* in a graph is a sequence of edges such that each edge ends at the vertex when the next edge begins.

Example. In the graph pictured above, how many paths of length 2 are there that start at the vertex 2 and end at the vertex 4?

Proposition

Let A be the adjacency matrix of a graph.

The entry b_{ij} of the matrix $A^2 = (b_{ij})$ gives the number of paths of length 2 that start at the vertex j and terminate at the vertex i.

In general, for any $n \ge 1$ the entry c_{ij} of the matrix $A^n = (c_{ij})$ gives the number of paths of length n that start at the vertex j and terminate at the vertex i.