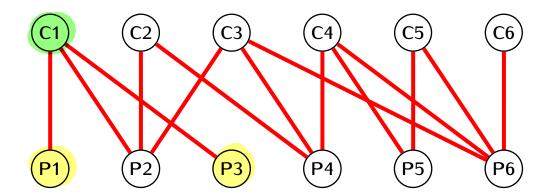
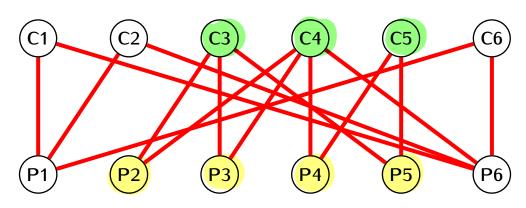
Example.



No solutions: There is only one candidate CI that matches two positions PI and P3.

Example.



No solutions: There are only 3 candidates matching the 4 positions P2, P3, P4, P5.

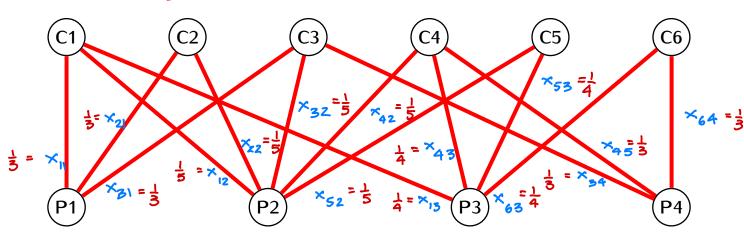
König's Theorem

Consider an assignment problem matching job candidates C_1, \ldots, C_n with positions P_1, \ldots, P_m . Assume that there exists a number k > 0 such that

- for each i = 1, ..., m there are at least k candidates who applied for the position P_i
- ullet each candidate C_j applied for at most k positions.

Then the assignment problem has a solution. That is, it is possible to match each position with a job candidate, in such way that every position is filled and each job candidate has at most one position.

Proof. k=3:



· We want to solve an integer program:

maximize
$$z = \sum_{j} x_{ij}$$

constraints: $\sum_{j} x_{ij} \leq 1$ (each candidate can get at most one position

 $\sum_{i} x_{ij} = 1$ (there is exactly one candidate selected for each position)

0 & xij & 1 xij e Z

- · We had: it suffices to solve the released linear program (x, j ER).
- The linear program has a feasible solution:

 For each j let deg(j) = number of edges adjacent to Cj

 Then set: xij = deg(j) 47

 Note: xij (1).